RESTful Web API| Patterns
and Practices

Mike Amundsen
@mamund

"This guide shows you the
rules, routines, commands,
and protocols—the glue—that
integrates individual
microservices So they can
function together in a safe,
scalable, and reliable way."

-- O'Reilly Media

OREILLY

RESTful Web API
Patterns & Practices
Cookbook

Connecting and Orchestrating Microservices
and Distributed Data

Mike Amundsen
Foreword by Matt McLarty

Overview

Pattern Thinking
Design

Clients

Services

Data

Workflow
Summary

=0-,

=5 I
LATE
BINDING HYPERLINKS

u 7 \“D[‘JD{"@

INDEPENDENT

SCALABILITY DEPLOYMENT
=

Pagit

GENERALITY

Pattern Thinking

Pattern Thinking

=5/ \
07 YN) %0
77

A/ (A\
% %0\‘ sm
N AR\ NAVANR

SO
».%.qbéw V4
. »0‘\ /{
N2 /@A

=l

=05 <ﬁa

A framework for
understanding,
designing, and
constructing systems

Pattern Thinking

Inductive reasoning is any of various
methods of reasoning in which broad
generalizations or principles are derived
from a body of observations.

Inductive Deductive
Reasoning Reasoning
OBSERVATION/EXPERIMENT

Generalizations Predictions

]

t

THEORY/PARADIGM

Pattern Thinking

"Each pattern describes a problem
which occurs over and over again, and
then describes the core of the solution
to that problem, in such a way that you

can use this solution a million times
over, without ever doing it the same way
twice"

-- Christopher Alexander

Pattern Thinking

Web-centric implementations

rely on three key elements: @ 4

messages, actions, and MESSAGES @ ACTIONS

vocabularies. \ . /

<D
|

VOCABULARIES

{ »

S :

Design

The problem is essentially the one discussed by science fiction writers: “how do you get
communications started among totally uncorrelated ‘sapient’ beings?”

—]J.C.R. Licklider, 1966

Design Patterns

Design systems so that machines
built by different people who have
never met can successfully
interact with each other.

:

PROFILES

Design Patterns

3.1 Creating Interoperability with Registered Media Types

3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies

3.4 Describing Problem Spaces with Semantic Profiles

)

DATA

Pkomi (
(PN

SN

El

a2

HYPERMEDIA

3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia

3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions

3.9 Design for Reversible Actions

3.10 Design for Extensible Messages

3.11 Design for Modifiable Interfaces

Design Patterns

3.1 Creating Interoperability with Registered Media Types

)

Pkomi (
(PN

3.2 Ensuring Future Compatibility with Structured Media Types_vn

3.3 Sharing Domain Specifics Via Published Vocabularies
3.4 Describing Problem Spaces with Semantic Profiles

El

a2

HYPERMEDIA

g

TYPES

3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia

3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions

3.9 Design for Reversible Actions

3.10 Design for Extensible Messages

3.11 Design for Modifiable Interfaces

Design Patterns

3.1 Creating Interoperability with Registered Media Types

3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies

3.4 Describing Problem Spaces with Semantic Profiles

)

DATA

Pkomi (
(PN

SN

El

a2

HYPERMEDIA

3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia
3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers

3.8 Design for Repeatable Actions
3.9 Design for Reversible Actions
3.10 Design for Extensible Messages
3.11 Design for Modifiable Interfaces

Design Patterns

3.1 Creating Interoperability with Registered Media Types

3.2 Ensuring Future Compatibility with Structured Media Types
3.3 Sharing Domain Specifics Via Published Vocabularies

3.4 Describing Problem Spaces with Semantic Profiles

)

Pkomi (
(PN

DATA

SN

=] P

HYPERMEDIA

MEDIA
TYPES

3.5 Expressing Domain Actions at Run-time with Embedded Hypermedia

3.6 Designing Consistent Data Writes with Idempotent Actions
3.7 Enabling Interoperability with Inter-Service State Transfers
3.8 Design for Repeatable Actions

3.9 Design for Reversible Actions

3.10 Design for Extensible Messages

3.11 Design for Modifiable Interfaces

$schema: "https://alps-io.github.io/schemas/alps.json",
- alps: {

Design Patterns

title: "Person Service API",

doc: { .. },
o . T d::criptor: [
Describing Problem Spaces with s e
Semantic Profiles type: "semantic”,

def: "https://schema.org/identifier",
title: "Id of the person record",
tag: "ontology",

+doc: { .. }
}I
=]
id: "givenName",
type: "semantic",
def: "https://schema.org/givenName",
title: "The given name of the person",
tag: "ontology",
+doc: { .. }
}I
2!
id: "familyName",
type: "semantic",
def: "https://schema.org/familyName",
title: "The family name of the person",
tag: "ontology",
+doc: { .. }
|

|

Design Patterns

Describing Problem Spaces with
Semantic Profiles

Person Service API

Person Service API profile for RWMBook.

« ALPS
« Application State Diagram

« Semantic Descriptors
o collection (semantic), List of person records

o doCreate (unsafe), Create a new person record

o doRemove (idempotent), Remove an existing person record

o doStatus (idempotent), Change the status of an existing person record
o doUpdate (idempotent), Update an existing person record

o email (semantic), Email address associated with the person

o familyName (semantic), The family name of the person

o givenName (semantic), The given name of the person

o goFilter (safe), Filter the list of person records

o goHome (safe), Go to the Home resource

o goltem (safe), Go to a single person record

o golist (safe), Go to the list of person records

o home (semantic), Home (starting point) of the person service

o id (semantic), Id of the person record

o item (semantic), Single person record

o person (semantic), The properties of a person record

o status (semantic), Status of the person record (active, inactive)
o telephone (semantic), Telephone associated with the person

Design Patterns

Describing Problem Spaces with Semantic Profiles

Person Service API

doCreate (unsafe)

collection

(person) goFilter (safe)

ist (safe)

doRemove (idempotent)
goltem, item read (safe) goFilter (safe)

goL.ist (safe)

doStatus (idempotent)
item
(person)

) doUpdate (idempotent)

goltem (safe)

oHome, self (safe)

Make designs composable

A y
:W \ 4»/0)/
P = VALIDATION

Clients

The good news about computers is that they do what you tell them to do. The bad
news is that they do what you tell them to do.

—Ted Nelson
T

Client Patterns

Create APl consumer apps that
make few assertions about how
they communicate (protocol,
message model, and vocabulary)
with servers and let the server
supply the details (the what) at
runtime.

= 0
o /) / V4

g X

(o]

s
/

STATE

B =
o
o o

Client Patterns L e

Code Clients to be HTTP-Aware o

// 4
I
VALIDATION

Limiting the use of Hard-Coded URLs @ \f-

1
2
.3 Coding More Resilient Clients With Message-Centric Implementations
4 Coding Effective Clients to Understand Vocabulary Profiles

.5 Negotiate for Profile Support at Runtime

.6 Managing Representation Formats At Runtime

.7 Using Schema Documents as a Source of Message Metadata
.8 Every Important Element Within a Response Needs an Identifier
.9 Relying on Hypermedia Controls In the Response

.10 Supporting Links and Forms for Non-Hypermedia Services
.11 Validating Data Properties At Runtime
.12 Using Document Schemas to Validate Outgoing Messages
.13 Using Document Queries to Validate Incoming Messages
.14 Validating Incoming Data
.15 Maintaining Your Own State
.16 Having A Goal In Mind

g B
<y
2

Code Clients to be HTTP-Aware o

o o

Client Patterns L e

HTTP ™S {:E} e

Limiting the use of Hard-Coded URLs @ \f-

// 4
I
VALIDATION

A
2
.3 Coding More Resilient Clients With Message-Centric Implementations
4 Coding Effective Clients to Understand Vocabulary Profiles
.5 Negotiate for Profile Support at Runtime

.6 Managing Representation Formats At Runtime

.7 Using Schema Documents as a Source of Message Metadata
.8 Every Important Element Within a Response Needs an Identifier
.9 Relying on Hypermedia Controls In the Response

.10 Supporting Links and Forms for Non-Hypermedia Services
.11 Validating Data Properties At Runtime
.12 Using Document Schemas to Validate Outgoing Messages
.13 Using Document Queries to Validate Incoming Messages
.14 Validating Incoming Data
.15 Maintaining Your Own State
.16 Having A Goal In Mind

B =
o
o o

Client Patterns L e

Code Clients to be HTTP-Aware

V4
Lt
VALIDATION

Limiting the use of Hard-Coded URLs @? \f-

1
2
3 Coding More Resilient Clients With Message-Centric Implementations
4 Coding Effective Clients to Understand Vocabulary Profiles

5 Negotiate for Profile Support at Runtime

6 Managing Representation Formats At Runtime

7 Using Schema Documents as a Source of Message Metadata
8 Every Important Element Within a Response Needs an Identifier
9 Relying on Hypermedia Controls In the Response
10 Supporting Links and Forms for Non-Hypermedia Services
11 Validating Data Properties At Runtime
12 Using Document Schemas to Validate Outgoing Messages
13 Using Document Queries to Validate Incoming Messages
14 Validating Incoming Data
15 Maintaining Your Own State

4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.16 Having A Goal In Mind

Client Patterns y
HITP S {f} /VALIDATION

Limiting the use of Hard-Coded URLs
Code Clients to be HTTP-Aware

1
2
3
4 Coding Effective Clients to Understand Vocabulary Profiles

.5 Negotiate for Profile Support at Runtime

.6 Managing Representation Formats At Runtime

.7 Using Schema Documents as a Source of Message Metadata
.8 Every Important Element Within a Response Needs an Identifier
.9 Relying on Hypermedia Controls In the Response

.10 Supporting Links and Forms for Non-Hypermedia Services

.11 Validating Data Properties At Runtime

.12 Using Document Schemas to Validate Outgoing Messages

.13 Using Document Queries to Validate Incoming Messages

.14 Validating Incoming Data

.15 Maintaining Your Own State

.16 Having A Goal In Mind

Coding More Resilient Clients With Message-Centric Implementation

B =
s
e
HYPERMEDIA
V4
Lt

Client Patterns y
HITP S {f} /VALIDATION

Limiting the use of Hard-Coded URLs
Code Clients to be HTTP-Aware

A
2
3
4 Coding Effective Clients to Understand Vocabulary Profiles

.5 Negotiate for Profile Support at Runtime

.6 Managing Representation Formats At Runtime

.7 Using Schema Documents as a Source of Message Metadata
.8 Every Important Element Within a Response Needs an Identifier
.9 Relying on Hypermedia Controls In the Response

.10 Supporting Links and Forms for Non-Hypermedia Services

.11 Validating Data Properties At Runtime

.12 Using Document Schemas to Validate Outgoing Messages

.13 Using Document Queries to Validate Incoming Messages

.14 Validating Incoming Data

.15 Maintaining Your Own State

.16 Having A Goal In Mind

Coding More Resilient Clients With Message-Centric Implementation

B =
s
e
HYPERMEDIA
V4
Lt

Client Patterns

function handleResponse(ajax,url) {

Managing Representation Formats Eenle g
if(ajax.readyState===1) {
. t
at Runtlme thf/pe = ajax.getResponseHeader("content-type").tolLowerCase();

switch(ctype) {

case "application/vnd.collection+json":
cj.parse(JSON.parse(ajax.responseText));
break;

case "application/vnd.siren+json":
siren.parse(JSON.parse(ajax.responseText));
break;

case "application/vnd.hal+json":
hal.parse(JSON.parse(ajax.responseText));
break;

default:
dump(ajax.responseText);
break;

}

}
catch(ex) {
alert(ex);

Client Patterns

function handleResponse(ajax,url) {

Managing Representation Formats URtl pe
if(ajax.readyState===1) {
H tr
at Runtlme ztf/pe ent-type").toLowerCase();

cj.parse(JSON.
break;

case "application/vnd.siren+json":
siren.parse(JSON.parse(ajax.responseText));
break;

case "application/vnd.hal+json":
hal.parse(JSON.parse(ajax.responseText));
break;

default:
dump(ajax.responseText);
break;

}

}
catch(ex) {
alert(ex);

Client Patterns

function handleResponse(ajax,url) {

Managing Representation Formats Eenle g
if(ajax.readyState===1) {
. t
at Runtlme thf/pe = ajax.getResponseHeader("content-type").tolLowerCase();

switch(ctype) {
case "application/vnd.collection+json":
cj.parse(JSON.parse(ajax.responseText));

pplication/vnd.hal+json":
hal.parse(JSON.parse(ajax.responseText));
break;
default:
dump(ajax.responseText);
break;

}

}
catch(ex) {
alert(ex);

Client Patterns

function handleResponse(ajax,url) {

Managing Representation Formats Eenle g
if(ajax.readyState===1) {
. t
at Runtlme thf/pe = ajax.getResponseHeader("content-type").tolLowerCase();

switch(ctype) {
case "application/vnd.collection+json":
cj.parse(JSON.parse(ajax.responseText));
break;
case "application/vnd.siren+json":
(JSON.parse(ajax.responseText));

hal.pars
break;

default:
dump(ajax.responseText);
break;

}

}
catch(ex) {
alert(ex);

Make clients adaptable

CONTENT

NEG;I'IATION
K.
—

il &
¥~ %/ |
o /5%) HEI'ABATA\ %lz ! _ /
TIME ;N &

Services

The best software architecture “knows” what changes often and makes that easy.

—Paul Clements

Service Patterns

/

The APl is the contract — the CONTENT
promise that needs to be kept. NEGOT'AT'ON '-

A ,

Z% / M ETADATA > /

-
BUILD 'sz

TIME @ 7 \6{?

Service Patterns

5.1 Publishing at Least One Stable URL

5.2 Preventing Internal Model Leaks

5.3 Converting Internal Models to External Messages

5.4 Expressing Internal Functions as External Actions

5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation

5.7 Publishing Complete Vocabularies for Machine Clients

5.8 Supporting Shared Vocabularies in Standard Formats

5.9 Publishing Service Definition Documents

5.10 Publishing APl Metadata

5.11 Supporting Service Health Monitoring

5.12 Standardizing Error Reporting

5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers

5.15 Improving Reliability with Idempotent Create

5.16 Providing Runtime Fallbacks for Dependent Services

5.17 Using Semantic Proxies to Access Non-Compliant Services

@:ﬂj

& /
/
/%/\DI /

METADATA
BUILD
TIME

CONTENT
NEGOTIATION

&

RUN
TIME

Q"

Service Patterns

5.1 Publishing at Least One Stable URL

5.2 Preventing Internal Model Leaks

5.3 Converting Internal Models to External Messages

5.4 Expressing Internal Functions as External Actions

5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation

5.7 Publishing Complete Vocabularies for Machine Clients

5.8 Supporting Shared Vocabularies in Standard Formats

5.9 Publishing Service Definition Documents

5.10 Publishing APl Metadata

5.11 Supporting Service Health Monitoring

5.12 Standardizing Error Reporting

5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers

5.15 Improving Reliability with Idempotent Create

5.16 Providing Runtime Fallbacks for Dependent Services

5.17 Using Semantic Proxies to Access Non-Compliant Services

@:ﬂj

& /
/
/%/\DI /

METADATA
BUILD
TIME

CONTENT
NEGOTIATION

&

RUN
TIME

Q"

Service Patterns

5.1 Publishing at Least One Stable URL

5.2 Preventing Internal Model Leaks

5.3 Converting Internal Models to External Messages

5.4 Expressing Internal Functions as External Actions

5.5 Advertising Support for Client Preferences for Responses
5.6 Supporting HTTP Content Negotiation

5.7 Publishing Complete Vocabularies for Machine Clients
5.8 Supporting Shared Vocabularies in Standard Formats

5.9 Publishing Service Definition Documents

5.10 Publishing APl Metadata

5.11 Supporting Service Health Monitoring

5.12 Standardizing Error Reporting

5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers

5.15 Improving Reliability with Idempotent Create

5.16 Providing Runtime Fallbacks for Dependent Services

5.17 Using Semantic Proxies to Access Non-Compliant Services

@:ﬂj

& /
/
/%/\DI /

METADATA
BUILD
TIME

CONTENT
NEGOTIATION

&

RUN
TIME

Q"

Service Patterns

5.1 Publishing at Least One Stable URL

5.2 Preventing Internal Model Leaks

5.3 Converting Internal Models to External Messages

5.4 Expressing Internal Functions as External Actions

5.5 Advertising Support for Client Preferences for Responses

5.6 Supporting HTTP Content Negotiation

5.7 Publishing Complete Vocabularies for Machine Clients

5.8 Supporting Shared Vocabularies in Standard Formats

5.9 Publishing Service Definition Documents

5.10 Publishing APl Metadata

5.11 Supporting Service Health Monitoring

5.12 Standardizing Error Reporting

5.13 Improve Service Discoverability with a Runtime Service Registry
5.14 Increasing Throughput with Client-Supplied Identifiers

5.15 Improving Reliability with Idempotent Create

5.16 Providing Runtime Fallbacks for Dependent Services

5.17 Using Semantic Proxies to Access Non-Compliant Services

@:ﬂj

& /
/
/%/\DI /

METADATA
BUILD
TIME

CONTENT
NEGOTIATION

&

RUN
TIME

Q"

Service Patterns

Improve Service Discoverability with a Runtime Service Registry

var srsResponse = null;
var srsRegister({uUrl:"...","name":"...", 1)

// register this service w/ defaults

discovery.register(srsRegister, function(data, response) {
srsResponse = JSON.parse(data);
initiateKeepAlive(srsResponse.href, srsResponse.milliseconds);
http.createServer(uuidGenerator).listen(port);
console.info('uuid-generator running on port '+port+'.');

1);

Service Patterns

Improve Service Discoverability with a Runtime Service Registry

var srsResponse = null;

// register this service w/ defaults

discovery.register(srsRegister, funct|
srsResponse = JSON.parse(data);
initiateKeepAlive(srsResponse. href,
http.createServer(uuidGenerator).1i
console.info('uuid-generator runnin

1);

var srsRegister({Url:"...","name":"...

// set up proper discovery shutdown
process.on('SIGTERM', function () {
discovery.unregister (null, function(response) {

try {
uuidGenerator.close(function() {
console.log('gracefully shutting down');
process.exit(0);

});

} catch(e){}

})s;

setTimeout (function() {
console.error('forcefully shutting down');
process.exit(1);

}, 10000);

});

Make services modifiable

0To
00T0Y0X0
00D11D
b
RELATIONSHIPS
Gressees ﬂﬁmmm
ACTIONS X\ FUNCTIONS
SORGL 7 *GL

[{ woorre 27
D EXTEND IDEPOTENCY

Data

First step in breaking the data centric habit, is to stop designing systems as a collection
of data services, and instead design for business capabilities.

—Irakli Nadareishvili JPMorgan Chase

Data Patterns

"Your data model is not your object
model is not your resource model is
not your representation model."

RELATIONSHIPS
-- Amundsen's Maxim @HESSAGES OBJECTS
ACTIONS \ FUNCTIONS
S IRAL & QL

o vovry & L
E5 EXTEND IDEMPOTENCY

https://www.amundsens-maxim.com/

Data Patterns

6.1 Hiding Your Data Storage Internals

6.2 Making All Changes Idempotent

6.3 Hide Data Relationships for External Actions

6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses

6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries

6.8 Ignore Unknown Data Fields

6.9 Improving Performance with Caching Directives

6.10 Modifying Data Models In Production

6.11 Extending Remote Data Stores

6.12 Limiting Large Scale Responses

6.13 Using Pass-Through Proxies for Data Exchange

Data Patterns

6.1 Hiding Your Data Storage Internals

6.2 Making All Changes Idempotent

6.3 Hide Data Relationships for External Actions

6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses

6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries

6.8 Ignore Unknown Data Fields

6.9 Improving Performance with Caching Directives

6.10 Modifying Data Models In Production

6.11 Extending Remote Data Stores

6.12 Limiting Large Scale Responses

6.13 Using Pass-Through Proxies for Data Exchange

Data Patterns

6.1 Hiding Your Data Storage Internals
6.2 Making All Changes Idempotent

6.3 Hide Data Relationships for External Actions

6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses

6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries

6.8 Ignore Unknown Data Fields

6.9 Improving Performance with Caching Directives

6.10 Modifying Data Models In Production

6.11 Extending Remote Data Stores

6.12 Limiting Large Scale Responses

6.13 Using Pass-Through Proxies for Data Exchange

Data Patterns

6.1 Hiding Your Data Storage Internals

6.2 Making All Changes Idempotent

6.3 Hide Data Relationships for External Actions

6.4 Leveraging HTTP URLs to Support “Contains” and “And” Queries
6.5 Returning Metadata for Query Responses

6.6 Returning HTTP 200 vs. HTTP 400 for Data-Centric Queries
6.7 Using Media Types for Data Queries

6.8 Ignore Unknown Data Fields

6.9 Improving Performance with Caching Directives

6.10 Modifying Data Models In Production

6.11 Extending Remote Data Stores

6.12 Limiting Large Scale Responses

6.13 Using Pass-Through Proxies for Data Exchange

Data Patterns

Modifying Data Models in
Production

"givenName": "John",
"familyName": "Doe",
"age": 21

PersonData
qlw2e3 | John Doe 21
r3t5y6 | Odeon Quarkus 77
|U7i809 | Encore Findlemyer |34

Data Patterns

Modifying Data Models in
Production

"givenName": "John",

PersonData
id givenName familyName Age
qlw2e3 | John Doe 21

r3t5y6 | Odeon Quarkus 77
U7i809 | Encore Findlemyer |34 |

"familyName": "Doe",
"age": 21
{
"givenName": "John",
"middleName": "Seymore",
"familyName": "Doe",
"age": 21
}i

Data Patterns

IlDoell y

Modifying Data Models in ‘ "givenName": "John",
Production "familyName":
"age": 21
. {
PersonData
id givenName familyName Age
qlw2e3 | John Doe 21
—{r3t5y6 | Odeon Quarkus 77 };
— u7i809 | Encore Findlemyer |34 !
. ” NameValuePairs
id link-id name value
qawsed | qiw2e3 [middleName | Seymore
frgthy |r3t5y6 [middleName | Fenimore
jukilo u7i809 |middleName | Jay |

"givenName": "John",

"middleName" :
"familyName":
"age": 21

"Seymore",
llooell ;

Make data portable

HANAGE \ _~ OPTIMIZATION
FLOW
HYPERHEDIA
/ ~_{£F D t08s

é &) Tasks
COoMHO

=
¢V ATTERNS

Workflow

Productivity is never an accident. It is always the result of a commitment to excellence,
intelligent planning, and focused effort.

—Paul J. Meyer

Workflow Patterns

Each service that is enlisted
in a workflow should be a
composable service.

v

MANAGE \

FLOW

COMMON PATTERNS

A

_~~ OPTIMIZATION

HYPERMEDIA

~_ &) yo8s
€ @) Tasks

Workflow Patterns

7.1 Designing Workflow-Compliant Services

7.2 Supporting Shared State for Workflows

7.3 Describing Workflow as Code

7.4 Describing Workflow as DSL

7.5 Describing Workflow as Documents

7.6 Supporting RESTful Job Control Language

7.7 Exposing a Progress Resource for Your Workflows

7.8 Returning All Related Actions

7.9 Returning Most-Recently Used Resources (MRUSs)

7.10 Supporting Stateful Work-In-Progress

7.11 Enabling Standard List Navigation

7.12 Supporting Partial Form Submit

7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays

7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries

7.17 Supporting Local Undo/Rollback

7.18 Calling for Help

7.19 Scaling Workflow with Queues and Clusters

7.20 Using Workflow Proxies to Enlist Non-Compliant Services

G o

HANAGE \ _~ OPTIMIZATION

HYPERHEDIA

/ \() J0BS
{7) Tasks
\TTERNS

Workflow Patterns

7.1 Designing Workflow-Compliant Services

7.2 Supporting Shared State for Workflows

7.3 Describing Workflow as Code

7.4 Describing Workflow as DSL

7.5 Describing Workflow as Documents

7.6 Supporting RESTful Job Control Language

7.7 Exposing a Progress Resource for Your Workflows

7.8 Returning All Related Actions

7.9 Returning Most-Recently Used Resources (MRUSs)

7.10 Supporting Stateful Work-In-Progress

7.11 Enabling Standard List Navigation

7.12 Supporting Partial Form Submit

7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays

7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries

7.17 Supporting Local Undo/Rollback

7.18 Calling for Help

7.19 Scaling Workflow with Queues and Clusters

7.20 Using Workflow Proxies to Enlist Non-Compliant Services

G o

HANAGE \ _~ OPTIMIZATION

HYPERHEDIA

/ \() J0BS
{7) Tasks
\TTERNS

Workflow Patterns

7.1 Designing Workflow-Compliant Services

7.2 Supporting Shared State for Workflows

7.3 Describing Workflow as Code

7.4 Describing Workflow as DSL

7.5 Describing Workflow as Documents

7.6 Supporting RESTful Job Control Language

7.7 Exposing a Progress Resource for Your Workflows

7.8 Returning All Related Actions

7.9 Returning Most-Recently Used Resources (MRUs)
7.10 Supporting Stateful Work-In-Progress

7.11 Enabling Standard List Navigation

7.12 Supporting Partial Form Submit

7.13 Using State-Watch to Enable Client-Driven Workflow
7.14 Optimizing Queries With Stored Replays

7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries

7.17 Supporting Local Undo/Rollback

7.18 Calling for Help

7.19 Scaling Workflow with Queues and Clusters

7.20 Using Workflow Proxies to Enlist Non-Compliant Services

G o

HANAGE \ _~ OPTIMIZATION

HYPERHEDIA

/ \() J0BS
{7) Tasks
\TTERNS

Workflow Patterns

7.1 Designing Workflow-Compliant Services

7.2 Supporting Shared State for Workflows

7.3 Describing Workflow as Code

7.4 Describing Workflow as DSL

7.5 Describing Workflow as Documents

7.6 Supporting RESTful Job Control Language

7.7 Exposing a Progress Resource for Your Workflows

7.8 Returning All Related Actions

7.9 Returning Most-Recently Used Resources (MRUSs)

7.10 Supporting Stateful Work-In-Progress

7.11 Enabling Standard List Navigation

7.12 Supporting Partial Form Submit

7.13 Using State-Watch to Enable Client-Driven Workflow

7.14 Optimizing Queries With Stored Replays

7.15 Synchronous Reply for Incomplete Work with 202 Accepted
7.16 Short-Term Fixes with Automatic Retries

7.17 Supporting Local Undo/Rollback

7.18 Calling for Help

7.19 Scaling Workflow with Queues and Clusters

7.20 Using Workflow Proxies to Enlist Non-Compliant Services

G o

HANAGE \ _~ OPTIMIZATION

HYPERHEDIA

/ \() J0BS
{7) Tasks
\TTERNS

Workflow Patterns

RESTful Job Control Language

golJobList, jobs collection (safe)

jobList
(jobRecord)

goHome, home (safe)
goJobltem (safe)

RESTful Job Control

jobCancelled
(jobRecord)

goHome, home (safe)

home

goHome, home (safe)

Dgo)obFiller, jobs search (safe)

doJobCreate (idempotent)

jobltem
(jobRecord)

doJobSuccess, jobs success (idempotent)

jobSuccess
(jobRecord)

-

doJobFailed, jobs failed (idempotent)

doJobCancel, job cancel (idempotent)

goHome, home (safe)

goHome, home (safe)

doJobContinue (idempotent)
doJobRemove (idempotent)
doJobRestart (idempotent)

doTaskCancel (idempotent)
doTaskRerun (idempotent)
doTaskRollback (idempotent)
doTaskStart (idempotent)
doTaskUpdate (idempotent)

jobFailed
(jobRecord)

RESTful Job Control

jobCancelled
(jobRecord)

Workflow Patterns

goHome, home (safe)

RESTful Job Control Language]

»| home |g—

v ¥y

goHome, home (safe)

golJobList, jobs collection (safe) doJobCancel, job cancel (idempotent)

jobList

(jobRecord) Dgo)obFiller, jobs search (safe) goHome, home (safe)

doJobCreate (idempotent)

goHome, home (safe) goHome, home (safe)

goJobltem (safe)

doJobContinue (idempotent)
doJobRemove (idempotent)
doJobRestart (idempotent)

jobltem
(jobRecord)

-

doTaskCancel (idempotent)

doTaskRerun (idempotent)
doTaskRollback (idempotent)
doTaskStart (idempotent)

doTaskUpdate (idempotent)

doJobSuccess, jobs success (idempotent) doJobFailed, jobs failed (idempotent)

jobSuccess jobFailed
(jobRecord) (jobRecord)

Workflow Patterns

RESTful Job Control Language

golJobList, jobs collection (safe)

jobList
(jobRecord)

goHome, home (safe)
goJobltem (safe)

RESTful Job Control

jobCancelled
(jobRecord)

goHome, home (safe)

home

goHome, home (safe)

oJobFilter, jobs search (safe)

doJobCreate (idempotent)

jobltem

(jobRecord)

doJobSuccess, jobs success (idempotent)

jobSuccess
(jobRecord)

-

doJobContinue (idempotent)
doJobRemove (idempotent)
doJobRestart (idempotent)

doTaskCancel (idempotent)
doTaskRerun (idempotent)
doTaskRollback (idempotent)
doTaskStart (idempotent)
doTaskUpdate (idempotent)

doJobFailed, jobs failed (idempotent)

doJobCancel, job cancel (idempotent)

goHome, home (safe)

goHome, home (safe)

jobFailed
(jobRecord)

Workflow Patterns

RESTful Job Control Language

golJobList, jobs collection (safe)

jobList
(jobRecord)

goHome, home (safe)

jobSuccess
(jobRecord)

goJobltem (safe)

RESTful Job Control

jobCancelled
(jobRecord)

goHome, home (safe)

home

goHome, home (safe)

Dgo)obFiller, jobs search (safe)

doJobCreate (idempotent)

4

Z

jobltem

(jobRecord)

|

-

doJobSuccess, jobs success (idempotent)

doJobFailed, jobs failed (idempotent)

doJobCancel, job cancel (idempotent)

goHome, home (safe)

goHome, home (safe)

doJobContinue (idempotent)

doJobRemove (idempotent)

doJobRestart (idempotent)
doJobUpd: i
doTaskCancel (idempotent)
doTaskRerun (idempotent)
doTaskRollback (idempotent)
doTaskStart (idempotent)
doTaskUpdate (idempotent)

jobFailed
(jobRecord)

Workflow Patterns

RESTful Job Control Language

golJobList, jobs collection (safe)

jobList
(jobRecord)

goHome, home (safe)

jobSuccess
(jobRecord)

Dgo)obFiller, jobs search (safe)

doJobCreate (idempotent)
goJobltem (safe)

RESTful Job Control

jobCancelled
(jobRecord)

goHome, home (safe)

home

goHome, home (safe) doJobCancel, job cancel (idempotent)

goHome, home (safe)

goHome, home (safe)

doJobContinue (idempotent)
doJobRemove (idempotent)
doJobRestart (idempotent)

i ojt?Rbgscr):‘l d) doTaskCancel (idempotent)

doJobSuccess, jobs success (idempotent)

- doTaskRerun (idempotent)

doTaskRollback (idempotent)
doTaskStart (idempotent)
doTaskUpdate (idempotent)

doJobFailed, jobs failed (idempotent)

jobFailed
(jobRecord)

Workflow Patterns T p—

(jobRecord)

goHome, home (safe)

RESTful Job Control Language

home

golJobList, jobs collection (safe) goHome, home (safe)

doJobCancel, job cancel (idempotent)

jobList
(jobRecord)

Dgo)obFiller, jobs search (safe) goHome, home (safe)

doJobCreate (idempotent)
goHome, home (safe)

goHome, home (safe)
goJobltem (safe)

doJobContinue (idempotent)
doJobRemove (idempotent)
doJobRestart (idempotent)

jobltem
(jobRecord)

-

doTaskCancel (idempotent)

doTaskRerun (idempotent)
doTaskRollback (idempotent)
doTaskStart (idempotent)

doTaskUpdate (idempotent)

doJobSuccess, jobs success (idempotent) doJobFailed, jobs failed (idempotent)

\ ¥

jobSuccess jobFailed
(jobRecord) (jobRecord)

Make workflow flexible

And so ...

Goals

Make designs composable
Make clients adaptable
Make services modifiable
Make data portable

Make workflow flexible

)

Goals

Make designs composable
Make clients adaptable
Make services modifiable
Make data portable

Make workflow flexible

)

K]
g‘} = =

PROFILES 2~ " HYPERMEDIA
\\\\‘ﬂr ﬁz‘\

Egj ///// \\\\ MEDIA

DATA

Goals

Make designs composable
Make clients adaptable
Make services modifiable
Make data portable

Make workflow flexible

)

B
<
pUA

’ N
El a2 of Q

HYPERMEDIA

Goals

Make designs composable
Make clients adaptable
Make services modifiable
Make data portable

Make workflow flexible

()
g‘}
5

B
<
pUA

o o

HYPERMEDIA

A

CONTENT
NEGOTIATION -

@

HETADATA /
£ o %‘,’1”5

TIHME @ ‘6{,

Goals

Make designs composable
Make clients adaptable
Make services modifiable
Make data portable

Make workflow flexible

B 2 w4

< Xy CONTENT
/< D\ NEGOTIATION ‘-
= - o o
HYPERMEDIA
PROFILES P~ HYPERMEDIA o / 4
T 5 S
(LU o VALIDATION
/
//
’@ / \fﬁv‘v é,:afé HETABATA RUN /
\J BUILD
\ N TIME TIME

/ AN
.ﬁ?ég GOAL STATE @ i

RELATIONSHIPS
Shessaces ﬂﬂ;DoaJEcTs
ACTIONS X\ FUNCTIONS
SORAL #7 "ol

o o Ve 4

B EXTEND IDEMPOTENCY

Goals

©

e Make designs composable
e Make clients adaptable
e Make services modifiable
e Make data portable
e Make workflow flexible
" <N - e\ »;E CONTENT @ v
<
e - A NEG?’IAT]ON @(D M
PE;&ES 4 0 HYP;RHEDIA @:ﬂj H?L':)ﬁ;f\ _~ OPTIMIZATION
. & / éﬁg} @nsssacs@ﬁws HYPERMEDIA
& 4
%/Z/‘b /MA\ RE{N// iQIRQL _}'QL /’5,} \gi TASKS
s o frows 27 oo

The RESTful Web API Principle

"Leverage global reach
to solve problems you
haven’t thought of for

people you have
never met.”

COHPOSITION

EXTENSION E

EVOLUTION

&

DISCOVERY

—~— InNNNN
LONGEVITY

The RESTful Web API Principle

“"Leverage global reach y
to solve problems you

COMPOSITION
haven’t thought of for % / DISCOVERY
eople you have
g pneﬁer met."” o =
. =0
— ~_ in(m ﬂ%
EXTENSION LONGEVITY

|

Good recipes increase our global reach—the ability to share our solutions
and to find and use the solutions of others.

EVOLUTION

The RESTful Web API Principle

“"Leverage global reach y
to solve problems you

COMPOSITION
haven’t thought of for % DISCOVERY
eople you have
p p y [[} H>
never met. o= |
=0 - . iﬂﬂﬂﬂi
EXTENSION l LONGEVITY

Good recipes make well-designed services available for others to use in /@
ways we haven’t thought of yet.
EVOLUTION

The RESTful Web API Principle

“"Leverage global reach y
to solve problems you

COMPOSITION
haven’t thought of for N DISCOVERY
eople you have
g pneﬁer met."” e =
. =0
— ~_ iﬂﬂﬂﬂ%
EXTENSION LONGEVITY
|

Good recipes make it possible for “strangers” (services and/or people) to /@
safely and successfully interact with each other to solve a problem.
EVOLUTION

The RESTful Web API Principle

“Leverage global reach &&

to solve problems you COMPOSITION

DISCOVERY
haven’t thought of for N
eople you have
’ pneter met." ~o5=
.

= e innnni

EXTENSION LONGEVITY
“Good recipes promote longevity and independent evolution on a scale of
decades.

EVOLUTION

The RESTful Web API Principle

“Leverage global reach &&

to solve problems you

COMPOSITION
haven’t thought of for \ / DISCOVERY
eople you have
g pneter met."” =
. =0
— — innnni
EXTENSION LONGEVITY

Good recipes recognize that nothing is permanent and things will always
change over time.

EVOLUTION

Pattern Thinking -- and Models

"Everything we think we know about the
world is a model.”

-- Donella Meadows, 2008

Pattern Thinking

"The difference between the novice and
the teacher is simply that the novice has
not learnt, yet, how to do things in such
a way that they can afford to make
small mistakes."

-- Christopher Alexander

Pattern Thinking

"The difference between the novice and
the teacher is simply that the novice
has not learnt, yet, how to do things in

such a way that they can afford to make
small mistakes."

-- Christopher Alexander

RESTful Web API| Patterns
and Practices

Mike Amundsen
@mamund

