CaWorld’15

DevOps: APl Management and Application Development

Mike Amundsen @mamund

CA Technologies #CAWorld

Dir. API Architecture, API

Academy
Session: DO3X96S

For Informational Purposes Only

Terms of this Presentation

© 2015 CA. All rights reserved. All trademarks referenced herein belong to their respective companies.

The content provided in this CA World 2015 presentation is intended for informational purposes only and does not form any type of
warranty. The information provided by a CA partner and/or CA customer has not been reviewed for accuracy by CA.

3 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca WO rld ’15

Agenda

ADAPTABILITY
LOOSELY-COUPLED
D.O.R.R.
CONWAY’S LAW

SUMMARY

Q&A

5 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. Cca Wor[d"]_s

Recent Tech Headlines...

)

= “How Etsy Deploys More Than 50 Times a Day’
- Joao Miranda - InfoQ, March 2014

= “Netflix ... deploys a hundred times per day”
- Zef Hemel — InfoQ, June 2013

= “How We Deploy 300 Times a Day”
- Zack Bloom, Hubspot blog, November 2013

6 @CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

What’s going on here?

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Yep — DevOps

@CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Yep — DevOps
But for CODE

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

“The Three Ways: The Principles Underpinning DevOps”

By Gene Kim
= The First Way: Systems Thinking
= The Second Way: Amplify Feedback Loops

= The Third Way: Culture of Continual Experimentation and Learning

11 @CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CaAWorld’15

Adaptability

12 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaAWorld’15

Adaptability

“To make suitable to requirements or __ﬁ
conditions; adjust or modify fittingly” :©
D

—J

13 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Adaptability

“To make suitable to requirements or __ﬁ
conditions; adjust or modify fittingly” :©
D

—J

14 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Adaptability

“To make suitable to requirements or __ﬁ
conditions; adjust or modify fittingly” :©
D

—J

15 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Evolution

“The gradual development of ﬁ
something, especially from simple to a

more complex form” :@
I

16 @CAWORLD H#CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaWorld’15

Refactoring

“The process of restructuring existing | — ﬁ
computer code without changing its | ——
external behavior” :@
N

—J

17 @CAWORLD H#CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaWorld’15

Refactoring

“The process of restructuring existing | — ﬁ
computer code without changing its | ——
external behavior” __©
N

—J

18 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaWorld’15

Adaptability
Is a
System Property

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Adaptability
Is a
System Property

Desired Property

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Loosely-Coupled

21 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaAWorld’15

Loosely-Coupled

“A system in which each of
its components has little or no —
knowledge of the [internal] definitions | ——;
of other separate components” —@
I

22 @CAWORLD HCAWORLD © 2015 CA . ALL RIGHTS RESERVED . CaWorld’15

Loosely-Coupled

Design Patterns

“Program to an INTERFACE, not an
implementation.” — GoF, 1994 e

twas -5

g

23 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. Cca Wor[d"]_s

Loosely-Coupled

Your system is NOT loosely-coupled if L[_)

deploying Component-A means you - —xT)
MUST also deploy Component-B.
=3
@-"El
=3

CaWorld’15

Loosely-Coupled

“Embrace independent
evolvability.”

- Darrel Miller, Microsoft

25 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaWorld’15

Loosely-Coupled
is a
Constraint

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Loosely-Coupled
is a
Constraint

Desired Property :> Selected Constraint

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

D. O. R. R.

28 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaWorld’15

D. O. R.R.

29

Data Model (storage)
Object Model (functionality)
Resource Model (interface)

Representation Model (message)

CaAWorld’15

function main{object, action, argl, arg2, arg3) {
var rtn;

switch{action) {

case 'list’':
rtn = getlist(object);
break;

case 'filter':
rtn = getlist(object, argl);
brealk;

case 'item’:
rtn = getItem(object, argl);

Data Model B TS

rtn = addItem(object, argl, arg2);
brealk;

case "update’:
rtn = updateltem(object, argl, arg2, arg3);
brealk;

case 'remove'
rtn = removeltem(object, argl);
break;

default:
rtn = :
break;

@CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. }
| return rtn-

Object Model

@CAWORLD #CAWORLD

© 2015 CA. ALL RIGHTS RESERVED.

exports.task = function(action, argsl, args2, args

var object, rtn;

switch(action) {
case 'list’:
rtn = loadlList(storage(object,
brealk;
case 'read’:
rtn = loadlList(storage(object,
break;
case 'filter’:
rtn = loadlList(storage(object,
break;
case 'add’:
rtn = loadlList(storage(object,
brealk;
case
rtn = loadlList(storage(object,
default:
rtn = 3

'update’:

return rtn;
1

'list'), obje

"item', argsl

"filter', arg

switch(req.method) {
case 'GET':
if(parts[1] && parts[1].index0Of(?')===-1) {
switch (parts[1]) {
case "complete":
sendCompleteForm(req, res, parts[’], re:
break;
case "assign"
sendAssignUserForm(req, res, parts[], 1
break;
case "add":
sendAddTaskForm{(req, res, respond);
Resource Model break;
case "all":
case "bycategory":
'‘bytitle”:

-

case '
case "bycomplete”:
sendList(req, res, respond, parts[1]);

break;
default:
sendItem(req, res, parts[1], respond);
break;
¥
¥
@CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. o 1 o _{

Ay ™ _—_— %

D. O R R EI::.'I::h[mJ_mﬂTvpeJiju,J.z.,—.La e()) {
case "application/json":

doc = jzmn[ﬂhject, root);
break;

case "application/vnd.collectio
doc = cj(object, root);
break;

Representation case “application/vn
doc = ubergaan[abjpct_
Model break;

case "text/html"
case "application/html"
default:
doc = html(object, root);
break;

1
J

33 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. return doc -

D. O. R.R.

“Embrace Independent Evolvability”

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object = 'task';
rtn = R

switch(action) {
case ist’:

loadList(storage(object, "list'), object);
', argsl), object
, argsl), objed

loadList(storage(object, dd', argsl), object)

rtn = loadlList(storage(object, ‘up ="', argsl, args2
default:
rtn =

¥

return rtn;

34 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca WO rl.d ’15

D. O. R.R.

“Embrace Independent Evolvability”

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object = 'task';
rtn = R

switch(action) {
case ist":
loadList(storage(object, "lis switch(req.method) {
ase -
if(parts[!1] && parts[!].indexOf(
switch (parts[1]) {
case te":
sendCompleteForm(req, res, parts[’], respond);
break;
ase gn":
sendAssignUserForm(req, res, parts[’], respond);

loadlList(storage(object, ——

case =
sendAddTaskForm(req, res, respond);
break;

rtn = loadlList(storage(object,
default:
rtn =

case

} case

case

return rtn; case =

sendList(req, res, respond, parts[!]);
break;

default:

sendItem(req, res, parts[!], respond);

35 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaAWorld’15

D. O. R.R.

“Embrace Independent Evolvability

V4

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object =
rtn = R

switch(action) {
case ist":
rtn = loadlList(storage(object,
break;
case : [0 [
rtn = loadlList(storage(object,
break;
case 'filter':
rtn = loadlList(storage(object,
break;
case
rtn = loadlList(storage(object,
break;
case)AaTE :
rtn = loadlList(storage(object,
default:
rtn =

¥

return rtn;

iz switch(req.method) {

if(parts[!] && parts[!].indexOf(
switch (parts[1]) {

case =

sendCompleteForm(req, res, parts[
break;

case

break;

case =

sendAddTaskForm(req, res, respond
break;

case

case

case

case

break;
default:

sendAssignUserForm(req, res, part

sendList(req, res, respond, parts[!]);

switch({mimeType.tolowerCase()) {

case "ap

doc =
break

H
case "application/vnd.collection+json

doc =
break;

»
case "application/vnd.amundsen.uber+]

doc =
break;

plication/json
json{object, root);

5
cj{object, root});

p e
uberjson{object, root);

case "text/html":
case "application/html":

default:
doc =
break;

html{object, root);

son"

sendItem(req, res, parts[!], respond);

CaAWorld’15

@CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED.

D. O. R. R.
is a
Best Practice

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Desired Property

D. O. R. R.

is a

Best Practice

—)

38 @CAWORLD #CAWORLD

Selected Constraint :>

© 2015 CA. ALL RIGHTS RESERVED.

Best Practice

CaAWorld’15

Conway’s Law

39 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. CaAWorld’15

Conway’s Law

“Organizations produce
systems which are copies of
their communication
structures.”

— Mel Conway, 1968

40 @CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CaAWorld’15

Conway’s Law

organization:

41 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Conway’s Law

new system: organization:

42 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Conway’s Law

“If you have four teams
working on a compiler, you
get a four-pass complier.”

— Eric S. Raymond

CaAWorld’15

43 @CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED .

Conway’s Law

Organizational metrics can
predict software failure-
proneness with a precision
and recall of 85 percent.

— Microsoft Research

44 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED.

THE INFLUENCE OF ORGANIZATIONAL STRUCTURE ON
SOFTWARE QUALITY: AN EMPIRICAL CASE STUDY

Nachiappan Nagappan Brendan Murphy Victor R. Basili
Microsoft Research Microsoft Research University of Maryland
Redmond, WA, USA Cambridge, UK College Park, MD, USA
nachin@microsoft.com bmurphy@microsoft.com basili@cs.umd.edu
ABSTRACT 1. INTRODUCTION

Offten software systems are developed by organizations consisting
of many teams of individuals working together. Brooks states in
the Mythical Man Month book that product quality is strongly
affected by organization structure. Unfortunately there has been
little empirical evidence to date to substantiate this assertion. In
this paper we present a metric scheme to quantify organizational
complexity, in relation to the product development process to
identify if the metrics impact failure-proneness. In our case study,
the organizational metrics when applied to data from Windows
Vista were statistically significant predictors of failure-proneness.
The precision and recall measures for identifying failure-prone
binaries, using the organizational metrics, was significantly higher
than using traditional metrics like churn, complexity. coverage,
dependencies, and pre-release bug measures that have been used
to date 1o predict failure-proneness. Our results provide empirical
evidence that the organizational metrics are related to, and are
effective predictors of failure-proneness.

C; ies and Subject Dy

D23 [Software Engineering]: Software Metrics — complexity
measures, performance measures, process metrics, product
metrics

General Terms
Measurement, Reliability, Human Factors.

Software engincering is a complex engincering activity. It
involves interactions between people, processes, and tools to
develop a complete product. In practice, commercial software
development is performed by teams consisting of a number of
individuals ranging from the tens to the thousands. Often these
people work via an organizational structure reporting to a manager
or set of managers.

The intersection of people [9]. processes [29] and organization
[33] and the area of identifying problem prone components early
in the development process using software metrics (e.g. (13, 24,
28, 30]) has been studied extensively in recent rly
indicators of software quality are beneficial for software engincers
and managers in determining the reliability of the system,
estimating and prioritizing work items, focusing on areas that
require more testing, inspections and in general identifying
“problem-spots” to manage for unanticipated situations. Often
such estimates are obtained from measures like code churn, code
complexity, code coverage, code dependencies. etc. But these
studies often ignore one of the most influential factors in software
development, specifically “people and organizational structure”.
“This interesting fact serves as our main motivation to understand
the intersection between organizational structure and software
y: How does organizational complexity influence quality?
Can we identify measures of the organizational structure? How
well do thev do at predicting auality. e.e.. do thev do a better iob

CaWorld’15

Conway'’s Law
IS
Inevitable

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15

Desired Property

Summary

—)

46 @CAWORLD #CAWORLD

Selected Constraint

© 2015 CA. ALL RIGHTS RESERVED.

Best Practice

Desired Results

CaAWorld’15

Continuous Deployment

Every day you don’t release to | I
production is another day you
risk falling behind.

47 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World ’15

Continuous Change

“The only thing that is
constant is change.”

- Heraclitus

48 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED.

CaWorld’15

Summary

Adaptability as a System Property

Desired Property

49 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED. ca World’ls

Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

Desired Property

—

50 @CAWORLD #CAWORLD

Selected Constraint

© 2015 CA. ALL RIGHTS RESERVED.

CaWorld’15

Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

D.O.R.R. as a Best Practice

Desired Property

—

51 @CAWORLD #CAWORLD

Selected Constraint

© 2015 CA. ALL RIGHTS RESERVED.

Best Practice

CaWorld’15

Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

D.O.R.R. as a Best Practice

Conway’s Law is Inevitable

Desired Property

—>

52 @CAWORLD #CAWORLD

Selected Constraint

© 2015 CA. ALL RIGHTS RESERVED.

Best Practice

Desired Results

CaWorld’15

Future of Change

“Those who ignore the
mistakes of the future are
bound to make them.”

- Dr. Joseph Miller

53 @CAWORLD #CAWORLD © 2015 CA. ALL RIGHTS RESERVED

World’15

DevOps: APl Management and Application Development ca WOfld@’].S

Implementing Adaptable Mlcroserwces, -
A Methodology for Loosely- Coupledy 2
Components Vo

Mike Amundsen @mamund
CA Technologies #CAWorld
Dir. API Architecture, API

Academy

Session: DO3X96S

