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Recent Tech Headlines...

)

= “How Etsy Deploys More Than 50 Times a Day’
- Joao Miranda - InfoQ, March 2014

= “Netflix ... deploys a hundred times per day”
- Zef Hemel — InfoQ, June 2013

= “How We Deploy 300 Times a Day”
- Zack Bloom, Hubspot blog, November 2013
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What’s going on here?
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Yep — DevOps
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Yep — DevOps
But for CODE
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“The Three Ways: The Principles Underpinning DevOps”

By Gene Kim
= The First Way: Systems Thinking
= The Second Way: Amplify Feedback Loops

= The Third Way: Culture of Continual Experimentation and Learning
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Adaptability
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Adaptability

“To make suitable to requirements or __ﬁ
conditions; adjust or modify fittingly” :©
D

—J
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Adaptability

“To make suitable to requirements or __ﬁ
conditions; adjust or modify fittingly” :©
D

—J
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Evolution

“The gradual development of ﬁ
something, especially from simple to a

more complex form” :@
I
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Refactoring

“The process of restructuring existing | — ﬁ
computer code without changing its | ——
external behavior” :@
N

—J
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Refactoring

“The process of restructuring existing | — ﬁ
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Adaptability
Is a
System Property

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15



Adaptability
Is a
System Property

Desired Property
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Loosely-Coupled
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Loosely-Coupled

“A system in which each of
its components has little or no —
knowledge of the [internal] definitions | ——;
of other separate components” —@
I
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Loosely-Coupled

Design Patterns

“Program to an INTERFACE, not an
implementation.” — GoF, 1994 e

twas -5

g
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Loosely-Coupled

Your system is NOT loosely-coupled if L[_ )

deploying Component-A means you - —xT)
MUST also deploy Component-B.
=3
@-"El
=3
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Loosely-Coupled

“Embrace independent
evolvability.”

- Darrel Miller, Microsoft
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Loosely-Coupled
is a
Constraint
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Loosely-Coupled
is a
Constraint

Desired Property :> Selected Constraint
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D. O. R. R.
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D. O. R.R.

29

Data Model (storage)
Object Model (functionality)
Resource Model (interface)

Representation Model (message)
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function main{object, action, argl, arg2, arg3) {
var rtn;

switch{action) {

case 'list’':
rtn = getlist(object);
break;

case 'filter':
rtn = getlist(object, argl);
brealk;

case 'item’:
rtn = getItem(object, argl);

Data Model B TS

rtn = addItem(object, argl, arg2);
brealk;

case "update’:
rtn = updateltem(object, argl, arg2, arg3);
brealk;

case 'remove'
rtn = removeltem(object, argl);
break;

default:
rtn = :
break;
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Object Model
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exports.task = function(action, argsl, args2, args

var object, rtn;

switch(action) {
case 'list’:
rtn = loadlList(storage(object,
brealk;
case 'read’:
rtn = loadlList(storage(object,
break;
case 'filter’:
rtn = loadlList(storage(object,
break;
case 'add’:
rtn = loadlList(storage(object,
brealk;
case
rtn = loadlList(storage(object,
default:
rtn = 3

'update’:

return rtn;
1

'list'), obje

"item', argsl

"filter', arg



switch(req.method) {
case 'GET':
if(parts[1] && parts[1].index0Of( ?')===-1) {
switch (parts[1]) {
case "complete":
sendCompleteForm(req, res, parts[’], re:
break;
case "assign"
sendAssignUserForm(req, res, parts[ ], 1
break;
case "add":
sendAddTaskForm{(req, res, respond);
Resource Model break;
case "all":
case "bycategory":
'‘bytitle”:

-

case '
case "bycomplete”:
sendList(req, res, respond, parts[1]);

break;
default:
sendItem(req, res, parts[1], respond);
break;
¥
¥
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D. O R R EI::.'I::h[mJ_mﬂTvpeJiju,J.z.,—.La e()) {
case "application/json":

doc = jzmn[ﬂhject, root);
break;

case "application/vnd.collectio
doc = cj(object, root);
break;

Representation case “application/vn
doc = ubergaan[abjpct_
Model break;

case "text/html"
case "application/html"
default:
doc = html(object, root);
break;

1
J
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D. O. R.R.

“Embrace Independent Evolvability”

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object = 'task';
rtn = R

switch(action) {
case ist’:

loadList(storage(object, "list'), object);
', argsl), object
, argsl), objed

loadList(storage(object, dd', argsl), object)

rtn = loadlList(storage(object, ‘up ="', argsl, args2
default:
rtn =

¥

return rtn;
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D. O. R.R.

“Embrace Independent Evolvability”

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object = 'task';
rtn = R

switch(action) {
case ist":
loadList(storage(object, "lis switch(req.method) {
ase -
if(parts[!1] && parts[!].indexOf(
switch (parts[1]) {
case te":
sendCompleteForm(req, res, parts[’], respond);
break;
ase gn":
sendAssignUserForm(req, res, parts[’], respond);

loadlList(storage(object, ——

case =
sendAddTaskForm(req, res, respond);
break;

rtn = loadlList(storage(object,
default:
rtn =

case

} case

case

return rtn; case =

sendList(req, res, respond, parts[!]);
break;

default:

sendItem(req, res, parts[!], respond);
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D. O. R.R.

“Embrace Independent Evolvability

V4

exports.task = function(action, argsl, args2, args3) {

var object, rtn;

object =
rtn = R

switch(action) {
case ist":
rtn = loadlList(storage(object,
break;
case : [0 [
rtn = loadlList(storage(object,
break;
case 'filter':
rtn = loadlList(storage(object,
break;
case
rtn = loadlList(storage(object,
break;
case )AaTE :
rtn = loadlList(storage(object,
default:
rtn =

¥

return rtn;

iz switch(req.method) {

if(parts[!] && parts[!].indexOf(
switch (parts[1]) {

case =

sendCompleteForm(req, res, parts[
break;

case

break;

case =

sendAddTaskForm(req, res, respond
break;

case

case

case

case

break;
default:

sendAssignUserForm(req, res, part

sendList(req, res, respond, parts[!]);

switch({mimeType.tolowerCase()) {

case "ap

doc =
break

H
case "application/vnd.collection+json

doc =
break;

»
case "application/vnd.amundsen.uber+]

doc =
break;

plication/json
json{object, root);

5
cj{object, root});

p e
uberjson{object, root);

case "text/html":
case "application/html":

default:
doc =
break;

html{object, root);

son"

sendItem(req, res, parts[!], respond);
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D. O. R. R.
is a
Best Practice

@CAWORLD #CAWORLD © 2015 CA . ALL RIGHTS RESERVED . CcaWorld’15



Desired Property

D. O. R. R.

is a

Best Practice

—)
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Selected Constraint :>
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Best Practice
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Conway’s Law
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Conway’s Law

“Organizations produce
systems which are copies of
their communication
structures.”

— Mel Conway, 1968
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Conway’s Law

organization:
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Conway’s Law

new system: organization:
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Conway’s Law

“If you have four teams
working on a compiler, you
get a four-pass complier.”

— Eric S. Raymond

CaAWorld’15
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Conway’s Law

Organizational metrics can
predict software failure-
proneness with a precision
and recall of 85 percent.

— Microsoft Research
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THE INFLUENCE OF ORGANIZATIONAL STRUCTURE ON
SOFTWARE QUALITY: AN EMPIRICAL CASE STUDY

Nachiappan Nagappan Brendan Murphy Victor R. Basili
Microsoft Research Microsoft Research University of Maryland
Redmond, WA, USA Cambridge, UK College Park, MD, USA
nachin@microsoft.com bmurphy@microsoft.com basili@cs.umd.edu
ABSTRACT 1. INTRODUCTION

Offten software systems are developed by organizations consisting
of many teams of individuals working together. Brooks states in
the Mythical Man Month book that product quality is strongly
affected by organization structure. Unfortunately there has been
little empirical evidence to date to substantiate this assertion. In
this paper we present a metric scheme to quantify organizational
complexity, in relation to the product development process to
identify if the metrics impact failure-proneness. In our case study,
the organizational metrics when applied to data from Windows
Vista were statistically significant predictors of failure-proneness.
The precision and recall measures for identifying failure-prone
binaries, using the organizational metrics, was significantly higher
than using traditional metrics like churn, complexity. coverage,
dependencies, and pre-release bug measures that have been used
to date 1o predict failure-proneness. Our results provide empirical
evidence that the organizational metrics are related to, and are
effective predictors of failure-proneness.

C; ies and Subject Dy

D23 [Software Engineering]: Software Metrics — complexity
measures, performance measures, process metrics, product
metrics

General Terms
Measurement, Reliability, Human Factors.

Software engincering is a complex engincering activity. It
involves interactions between people, processes, and tools to
develop a complete product. In practice, commercial software
development is performed by teams consisting of a number of
individuals ranging from the tens to the thousands. Often these
people work via an organizational structure reporting to a manager
or set of managers.

The intersection of people [9]. processes [29] and organization
[33] and the area of identifying problem prone components early
in the development process using software metrics (e.g. (13, 24,
28, 30]) has been studied extensively in recent rly
indicators of software quality are beneficial for software engincers
and managers in determining the reliability of the system,
estimating and prioritizing work items, focusing on areas that
require more testing, inspections and in general identifying
“problem-spots” to manage for unanticipated situations. Often
such estimates are obtained from measures like code churn, code
complexity, code coverage, code dependencies. etc. But these
studies often ignore one of the most influential factors in software
development, specifically “people and organizational structure”.
“This interesting fact serves as our main motivation to understand
the intersection between organizational structure and software
y: How does organizational complexity influence quality?
Can we identify measures of the organizational structure? How
well do thev do at predicting auality. e.e.. do thev do a better iob
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Conway'’s Law
IS
Inevitable
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Desired Property

Summary

—)
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Selected Constraint

© 2015 CA. ALL RIGHTS RESERVED.

Best Practice

Desired Results
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Continuous Deployment

Every day you don’t release to | I
production is another day you
risk falling behind.
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Continuous Change

“The only thing that is
constant is change.”

- Heraclitus
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Summary

Adaptability as a System Property

Desired Property
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Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

Desired Property

—
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Selected Constraint
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Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

D.O.R.R. as a Best Practice

Desired Property

—
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Selected Constraint
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Best Practice

CaWorld’15



Summary

Adaptability as a System Property

Loosely-Coupled as a Constraint

D.O.R.R. as a Best Practice

Conway’s Law is Inevitable

Desired Property

—>
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Selected Constraint
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Best Practice

Desired Results
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Future of Change

“Those who ignore the
mistakes of the future are
bound to make them.”

- Dr. Joseph Miller
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