
API Design Methodology

Mike Amundsen

API Academy / CA

@mamund

Introduction

Learning Hypermedia Clients

• Focus on the client side code

• Covers human-driven & M2M

• Lots of code!

• Due in fall 2015

• @LCHBook #LCHProject

Hallway Conversations Podcast

Hosted by Phil Japikse, Steve Bohlen, Lee Brandt, James Bender

Website: www.hallwayconversations.com

iTunes: http://bit.ly/hallway_convo_itunes

Feed Burner: http://bit.ly/hallway_convo_feed

Also available through Windows Store

APIs for the Web

Actually, we have a

methodology already...

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

● Map domain actions to HTTP methods (CRUD)

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

● Map domain actions to HTTP methods (CRUD)

● Use the proper HTTP Status Codes

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

● Map domain actions to HTTP methods (CRUD)

● Use the proper HTTP Status Codes

● Document serialized objects as HTTP bodies

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

● Map domain actions to HTTP methods (CRUD)

● Use the proper HTTP Status Codes

● Document serialized objects as HTTP bodies

● Use HTTP headers responsibly

Design Guidelines

● Craft [good/pretty/usable/stable] URIs

● Map domain actions to HTTP methods (CRUD)

● Use the proper HTTP Status Codes

● Document serialized objects as HTTP bodies

● Use HTTP headers responsibly

● Describe edge cases (async, errors, authN/Z)

But there's a problem here...

Those are not design guidelines..

They are implementation guidelines!

Ok, so what is a design

methodology, then?

Here's a simple seven-step

procedure...

Yep, seven steps.

Let's design a Maze game API

1. List the Semantic Descriptors

1. List the Semantic Descriptors

(the what?)

1. List the Semantic Descriptors

(the what?)

You know, the stuff!

Ubiquitous Language

Ubiquitous Language is the term Eric Evans uses

in Domain Driven Design for the practice of

building up a common, rigorous language between

developers and users. This language should be

based on the Domain Model used in the software -

hence the need for it to be rigorous, since software

doesn't cope well with ambiguity.

-- Martin Fowler, 2006

Ubiquitous Language

Ubiquitous Language is the term Eric Evans uses

in Domain Driven Design for the practice of

building up a common, rigorous language between

developers and users. This language should be

based on the Domain Model used in the software -

hence the need for it to be rigorous, since software

doesn't cope well with ambiguity.

-- Martin Fowler, 2006

1. List the Semantic Descriptors

● A maze

● A maze cell

● A switch

● Switch position ("up" or "down")

● The title of a maze cell

● A doorway connecting to cells

● An exit from the maze

● A list of mazes

2. Draw a State Diagram

State Charts

State Charts are compact and

expressive – small diagrams can

express complex behavior – as well

as compositional and modular.

-- David Harel, 2002

State Charts

State Charts are compact and

expressive – small diagrams can

express complex behavior – as well

as compositional and modular.

-- David Harel, 2002

3. Reconcile Names

3. Reconcile Names

● IANA Link Relation Values

● schema.org

● microformats

● Dublin Core

● Activity Streams

3. Reconcile Names

● maze

● start

● current

● exit

● north, south, east, west

● switch

● flip

3. Reconcile Names

● maze

● start (IANA)

● current (IANA)

● exit

● north, south, east, west

● switch

● flip

3. Reconcile Names

● maze

● start (IANA)

● current (IANA)

● exit (microformats)

● north, south, east, west (microformats)

● switch

● flip

3. Reconcile Names

● maze

● start (IANA)

● current (IANA)

● exit (microformats)

● north, south, east, west (microformats)

● switch

● flip edit (IANA)

3. Reconcile Names

● http://mamund.com/rels/maze (RFC5988)

● start (IANA)

● current (IANA)

● exit (microformats)

● north, south, east, west (microformats)

● http://mamund.com.rels/switch (RFC5988)

● flip edit (IANA)

3. Reconcile Names

● IANA
o edit

o start

o current

● microformats
o exit

o north, south, east, west

● RFC5988
o http://mamund.com/rels/switch

o http://mamund.com/rels/maze

OK, that was the design part...

But I still need to implement it,

right?

4. Choose a Media Type

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

Message-Passing

The big idea is "messaging" - that is what

the kernal of Smalltalk/Squeak is all about

The key in making great and grow-able

systems is much more to design how its

modules communicate rather than what

their internal properties and behaviors

should be.

-- Alan Kay, 1998

Message-Passing
The big idea is "messaging" - that is what

the kernal of Smalltalk/Squeak is all about

The key in making great and grow-able

systems is much more to design how its

modules communicate rather than what

their internal properties and behaviors

should be.

-- Alan Kay, 1998

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

4. Choose a Media Type

● Use application/json, application/xml

● Collection type: Atom, OData, Collection+JSON

● Free-form: HTML, Siren, HAL, JSON-LD

● Invent your own semantic type

Collection+JSON

UBER+xml

MAZE+xml

5. Write a Profile

Profiles RFC

A profile allows clients to learn

about additional semantics that

are associated with the

resource.

-- Erik Wilde, 2013

Profiles RFC

A profile allows clients to learn

about additional semantics that

are associated with the

resource.

-- Erik Wilde, 2013

6. Implementation

6. Implementation

ta-da!

And now we have running code!

Wait, what's step seven?

7. Publication

7. Publication

● Publish your "billboard" URL

● Publish your profile

● Register new rel values and/or media types

● Publish the documentation

● Consider "well-known" URIs

Now, you're done!

Seven Simple Steps

1. List the Semantic Descriptors

2. Draw a State Diagram

3. Reconcile Names

4. Write a Profile

5. Select a Media Type

6. Implementation

7. Publication

Some Final Advice

Resources are an

implementation detail

Don't fall into the collection trap

Don't start with the

representation format

URL design doesn't matter

Standard names are probably better

than yours.

Don't keep all the hypermedia

in one place

Some Final Advice

● Resources are implementation details

● Don't fall into the collection trap

● Don't start w/ the representation format

● URL design doesn't matter

● Standard names are probably better than

yours

● Don't keep all the hypermedia in one place

In Conclusion...

In Conclusion...

● Don't confuse implementation w/ design

● Design is the hard part (high value)

● Implementation is the easy part (high speed)

● Avoid common design mistakes

● Go out and make lots of APIs!

API Design Methodology

Mike Amundsen

API Academy / CA

@mamund

